Materials Characterization Using Nondestructive Evaluation (NDE) Methods PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Materials Characterization Using Nondestructive Evaluation (NDE) Methods PDF full book. Access full book title Materials Characterization Using Nondestructive Evaluation (NDE) Methods by Gerhard Huebschen. Download full books in PDF and EPUB format.

Materials Characterization Using Nondestructive Evaluation (NDE) Methods

Materials Characterization Using Nondestructive Evaluation (NDE) Methods PDF Author: Gerhard Huebschen
Publisher: Woodhead Publishing
ISBN: 9780081000403
Category : Nondestructive testing
Languages : en
Pages : 320

Get Book

Book Description
" Materials Characterization Using Nondestructive Evaluation (NDE) Methods" discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. "Materials Characterization Using Nondestructive Evaluation (NDE) Methods" gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniquesReviews the determination of microstructural and mechanical propertiesFocuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industriesServes as a highly desirable resource for both long-term monitoring and short-term assessment of materials

Materials Characterization Using Nondestructive Evaluation (NDE) Methods

Materials Characterization Using Nondestructive Evaluation (NDE) Methods PDF Author: Gerhard Huebschen
Publisher: Woodhead Publishing
ISBN: 9780081000403
Category : Nondestructive testing
Languages : en
Pages : 320

View

Book Description
" Materials Characterization Using Nondestructive Evaluation (NDE) Methods" discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. "Materials Characterization Using Nondestructive Evaluation (NDE) Methods" gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniquesReviews the determination of microstructural and mechanical propertiesFocuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industriesServes as a highly desirable resource for both long-term monitoring and short-term assessment of materials

Nondestructive Materials Characterization

Nondestructive Materials Characterization PDF Author: Norbert G. H. Meyendorf
Publisher: Springer Science & Business Media
ISBN: 3662089882
Category : Science
Languages : en
Pages : 418

View

Book Description
With an emphasis on aircraft materials, this book describes techniques for the material characterization to detect and quantify degradation processes such as corrosion and fatigue. It introduces readers to these techniques based on x-ray, ultrasonic, optical and thermal principles and demonstrates the potential of the techniques for a wide variety of applications concerning aircraft materials, especially aluminum and titanium alloys. The advantages and disadvantages of various techniques are evaluated.

Materials Characterization Using Nondestructive Evaluation (NDE) Methods

Materials Characterization Using Nondestructive Evaluation (NDE) Methods PDF Author: Gerhard Huebschen
Publisher: Woodhead Publishing
ISBN: 008100057X
Category : Technology & Engineering
Languages : en
Pages : 320

View

Book Description
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques Reviews the determination of microstructural and mechanical properties Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials

Advanced Electromagnetic Models for Materials Characterization and Nondestructive Evaluation

Advanced Electromagnetic Models for Materials Characterization and Nondestructive Evaluation PDF Author: Harold A Sabbagh
Publisher: Springer Nature
ISBN: 303067956X
Category : Science
Languages : en
Pages : 351

View

Book Description
This book expands on the subject matter of ’Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy-Current Nondestructive Evaluation.’ It includes (a) voxel-based inversion methods, which are generalizations of model-based algorithms; (b) a complete electromagnetic model of advanced composites (and other novel exotic materials), stressing the highly anisotropic nature of these materials, as well as giving a number of applications to nondestructive evaluation; and (c) an up-to-date discussion of stochastic integral equations and propagation-of-uncertainty models in nondestructive evaluation. As such, the book combines research started twenty-five years ago in advanced composites and voxel-based algorithms, but published in scattered journal articles, as well as recent research in stochastic integral equations. All of these areas are of considerable interest to the aerospace, nuclear power, civil infrastructure, materials characterization and biomedical industries. The book covers the topic of computational electromagnetics in eddy-current nondestructive evaluation (NDE) by emphasizing three distinct topics: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. It is therefore more than an academic exercise and is valuable to users of eddy-current NDE technology in industries as varied as nuclear power, aerospace, materials characterization and biomedical imaging.

Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization

Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization PDF Author: C. H. Chen
Publisher: World Scientific
ISBN: 9812770941
Category : Medical
Languages : en
Pages : 682

View

Book Description
Ultrasonic methods have been very popular in nondestructive testing and characterization of materials. This book deals with both industrial ultrasound and medical ultrasound. The advantages of ultrasound include flexibility, low cost, in-line operation, and providing data in both signal and image formats for further analysis. The book devotes 11 chapters to ultrasonic methods. However, ultrasonic methods can be much less effective with some applications. So the book also has 14 chapters catering to other or advanced methods for nondestructive testing or material characterization. Topics like structural health monitoring, Terahertz methods, X-ray and thermography methods are presented. Besides different sensors for nondestructive testing, the book places much emphasis on signal/image processing and pattern recognition of the signals acquired.

Barkhausen Noise for Non-destructive Testing and Materials Characterization in Low Carbon Steels

Barkhausen Noise for Non-destructive Testing and Materials Characterization in Low Carbon Steels PDF Author: Tu Le Manh
Publisher: Woodhead Publishing
ISBN: 0081028784
Category : Science
Languages : en
Pages : 276

View

Book Description
Barkhausen Noise for Nondestructive Testing and Materials Characterization in Low Carbon Steels presents a balanced approach, reviewing the disadvantages and advantages of using this technique and its comparison over other magnetic testing techniques. In addition, the book looks towards future applications of this technique, in particular, its industrial applications as a method for pipeline inspection, current advantages, and barriers to implementation. The book is suitable for materials scientists, researchers and engineers, and may be applicable for those working in metallurgical plants. Not only does the book discuss fundamentals, it reviews recent discoveries, such as the correlation between magnetocrystalline energy and Barkhausen noise, the modeling of this relationship, and the application of this technique in the characterization of magnetic materials. Provides detailed explanation for the stochastic and deterministic characteristics of Barkhausen noise Discusses principles of applying Barkhausen noise as a non-destructive method and magnetic material characterization method Reviews the advantages and disadvantages of this non-destructive testing technique and compares it to other competitive techniques

Materials Characterization for Systems Performance and Reliability

Materials Characterization for Systems Performance and Reliability PDF Author: James W. McCauley
Publisher: Springer Science & Business Media
ISBN: 1461321190
Category : Technology & Engineering
Languages : en
Pages : 603

View

Book Description
The Sagamore Army Materials Research Conferences have been held in the beautiful Adirondack Mountains of New York State since 1954. Organized and conducted by the Army Materials and Mechanics Research Center (Watertown, Massachusetts) in cooperation with Syracuse University, the Conferences have focused on key issues in Materials Science and Engineering that impact directly on current or future Army problem areas. A select group of speakers and attendees are assembled from academia, industry, and other parts of the Department of Defense and Government to provide an optimum forum for a full dialogue on the selected topic. This book is a collection of the full manuscripts of the formal presentations given at the Conference. The emergence and use of nontraditional materials and the excessive failures and reject rates of high technology, materials intensive engineering systems necessitates a new approach to quality control. Thus, the theme of this year's Thirty-First Conference, "Materials Characterization for Systems Performance and Reliability," was selected to focus on the need and mechanisms to transition from defect interrogation of materials after production to utilization of materials characterization during manufacturing. The guidance and help of the steering committee and the dedicated and conscientious efforts of Ms. Karen Ka100stian, Con ference Coordinator, and Mr. William K. Wilson, and Ms. Mary Ann Holmquist are gratefully acknowledged. The continued active interest and support of Dr. Edward S. Wright, Director, AMMRC; Dr. Robert W. Lewis, Associate Director, AMMRC; and COL L. C. Ross, Commander/ Deputy Director, AMMRC; are greatly appreciated.

Nondestructive Characterization of Materials IV

Nondestructive Characterization of Materials IV PDF Author: J.F. Bussière
Publisher: Springer Science & Business Media
ISBN: 1489906703
Category : Technology & Engineering
Languages : en
Pages : 516

View

Book Description
There is a great deal of interest in extending nondestructive technologies beyond the location and identification of cracks and voids. Specifically there is growing interest in the application of nondestructive evaluation (NOEl to the measurement of physical and mechanical properties of materials. The measurement of materials properties is often referred to as materials characterization; thus nondestructive techniques applied to characterization become nondestructive characterization (NDCl. There are a number of meetings, proceedings and journals focused upon nondestructive technologies and the detection and identification of cracks and voids. However, the series of symposia, of which these proceedings represent the fourth, are the only meetings uniquely focused upon nondestructive characterization. Moreover, these symposia are especially concerned with stimulating communication between the materials, mechanical and manufacturing engineer and the NDE technology oriented engineer and scientist. These symposia recognize that it is the welding of these areas of expertise that is necessary for practical development and application of NDC technology to measurements of components for in service life time and sensor technology for intelligent processing of materials. These proceedings are from the fourth international symposia and are edited by c.o. Ruud, J. F. Bussiere and R.E. Green, Jr. . The dates, places, etc of the symposia held to date area as follows: Symposia on Nondestructive Methods for TITLE: Material Property Determination DATES: April 6-8, 1983 PLACE: Hershey, PA, USA CHAIRPERSONS: C.O. Ruud and R.E. Green, Jr.

Nondestructive Characterization of Materials

Nondestructive Characterization of Materials PDF Author: Paul Höller
Publisher: Springer Science & Business Media
ISBN: 3642840035
Category : Technology & Engineering
Languages : en
Pages : 892

View

Book Description
Engineering structures for reliable function and safety have to be designed such that operational mechanical loads are compensated for by stresses in the components bearable by the materials used. Vhat is "bearable"? First of all it depends on the properties of the chosen materials as well as on several other parameters, e.g. temperature, corrosivity of the environment, elapsed or remaining serviceable life, unexpected deterioration of materials, whatever the source and nature of such deterioration may be: defects, loss of strength, embrittlement, wastage, etc. DEFECTS and PROPERTIES of materials currently determine loadability. Therefore in addition to nondestructive testing for defects there is also a need for nondestructive testing of properties. The third type of information to be supplied by nondestructive measurement pertains to STRESS STATES under OPERATIONAL LOADS, i.e. LOAD-INDUCED plus RESIDUAL STRESSES. Residual stresses normally cannot be calculated; they have to be measured nondestructively; well-approved elastomechanical finite element codes are available and used for calculating load-induced stresses; for redundancy and reliability, engineers, however, need procedures and instrumentation for experimental checks.

Nondestructive Characterization of Materials VI

Nondestructive Characterization of Materials VI PDF Author: Robert E. Green
Publisher: Springer Science & Business Media
ISBN: 1461525748
Category : Technology & Engineering
Languages : en
Pages : 826

View

Book Description
Traditionally the vast majority of materials characterization techniques have been destructive, e. g. , chemical compositional analysis, metallographic determination of microstructure, tensile test measurement of mechanical properties, etc. Also, traditionally, nondestructive techniques have been used almost exclusively for the detection of macroscopic defects, mostly cracks, in structures and devices which have already been constructed and have already been in service for an extended period of time. Following these conventional nondestructive tests, it has been common practice to use somewhat arbitrary accept-reject criteria to decide whether or not the structure or device should be removed from service. The present unfavorable status of a large segment of industry, coupled with the desire to keep structures in service well past their original design life, dramatically show that our traditional approaches must be drastically modified if we are to be able to meet future needs. The role of nondestructive characterization of materials is changing and will continue to change dramatically. It has become increasingly evident that it is both practical and cost effective to expand the role of nondestructive evaluation to include all aspects of materials' production and application and to introduce it much earlier in the manufacturing cycle. In fact, the recovery of a large portion of industry from severe economic problems is dependent, in part, on the successful implementation of this expanded role.