Handbook of Geometric Constraint Systems Principles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Handbook of Geometric Constraint Systems Principles PDF full book. Access full book title Handbook of Geometric Constraint Systems Principles by Meera Sitharam. Download full books in PDF and EPUB format.

Handbook of Geometric Constraint Systems Principles

Handbook of Geometric Constraint Systems Principles PDF Author: Meera Sitharam
Publisher: CRC Press
ISBN: 1498738923
Category : Mathematics
Languages : en
Pages : 578

Get Book

Book Description
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.

Handbook of Geometric Constraint Systems Principles

Handbook of Geometric Constraint Systems Principles PDF Author: Meera Sitharam
Publisher: CRC Press
ISBN: 1498738923
Category : Mathematics
Languages : en
Pages : 578

View

Book Description
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.

Handbook of Geometric Constraint Systems Principles

Handbook of Geometric Constraint Systems Principles PDF Author: Meera Sitharam
Publisher: CRC Press
ISBN: 1351647431
Category : Mathematics
Languages : en
Pages : 578

View

Book Description
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.

Handbook of Geometric Constraint Systems Principles

Handbook of Geometric Constraint Systems Principles PDF Author: Meera Sitharam
Publisher:
ISBN: 9781315121116
Category : Geometry
Languages : en
Pages : 577

View

Book Description


Volumetric Discrete Geometry

Volumetric Discrete Geometry PDF Author: Karoly Bezdek
Publisher: CRC Press
ISBN: 1000000338
Category : Mathematics
Languages : en
Pages : 286

View

Book Description
Volume of geometric objects plays an important role in applied and theoretical mathematics. This is particularly true in the relatively new branch of discrete geometry, where volume is often used to find new topics for research. Volumetric Discrete Geometry demonstrates the recent aspects of volume, introduces problems related to it, and presents methods to apply it to other geometric problems. Part I of the text consists of survey chapters of selected topics on volume and is suitable for advanced undergraduate students. Part II has chapters of selected proofs of theorems stated in Part I and is oriented for graduate level students wishing to learn about the latest research on the topic. Chapters can be studied independently from each other. Provides a list of 30 open problems to promote research Features more than 60 research exercises Ideally suited for researchers and students of combinatorics, geometry and discrete mathematics

Applications of Polynomial Systems

Applications of Polynomial Systems PDF Author: David A. Cox
Publisher: American Mathematical Soc.
ISBN: 1470451379
Category : Education
Languages : en
Pages : 250

View

Book Description
Systems of polynomial equations can be used to model an astonishing variety of phenomena. This book explores the geometry and algebra of such systems and includes numerous applications. The book begins with elimination theory from Newton to the twenty-first century and then discusses the interaction between algebraic geometry and numerical computations, a subject now called numerical algebraic geometry. The final three chapters discuss applications to geometric modeling, rigidity theory, and chemical reaction networks in detail. Each chapter ends with a section written by a leading expert. Examples in the book include oil wells, HIV infection, phylogenetic models, four-bar mechanisms, border rank, font design, Stewart-Gough platforms, rigidity of edge graphs, Gaussian graphical models, geometric constraint systems, and enzymatic cascades. The reader will encounter geometric objects such as Bézier patches, Cayley-Menger varieties, and toric varieties; and algebraic objects such as resultants, Rees algebras, approximation complexes, matroids, and toric ideals. Two important subthemes that appear in multiple chapters are toric varieties and algebraic statistics. The book also discusses the history of elimination theory, including its near elimination in the middle of the twentieth century. The main goal is to inspire the reader to learn about the topics covered in the book. With this in mind, the book has an extensive bibliography containing over 350 books and papers.

The Art of Proving Binomial Identities

The Art of Proving Binomial Identities PDF Author: Michael Z. Spivey
Publisher: CRC Press
ISBN: 1351215809
Category : Mathematics
Languages : en
Pages : 368

View

Book Description
The book has two goals: (1) Provide a unified treatment of the binomial coefficients, and (2) Bring together much of the undergraduate mathematics curriculum via one theme (the binomial coefficients). The binomial coefficients arise in a variety of areas of mathematics: combinatorics, of course, but also basic algebra (binomial theorem), infinite series (Newton’s binomial series), differentiation (Leibniz’s generalized product rule), special functions (the beta and gamma functions), probability, statistics, number theory, finite difference calculus, algorithm analysis, and even statistical mechanics.

Combinatorics and Number Theory of Counting Sequences

Combinatorics and Number Theory of Counting Sequences PDF Author: Istvan Mezo
Publisher: CRC Press
ISBN: 1351346385
Category : Computers
Languages : en
Pages : 480

View

Book Description
Combinatorics and Number Theory of Counting Sequences is an introduction to the theory of finite set partitions and to the enumeration of cycle decompositions of permutations. The presentation prioritizes elementary enumerative proofs. Therefore, parts of the book are designed so that even those high school students and teachers who are interested in combinatorics can have the benefit of them. Still, the book collects vast, up-to-date information for many counting sequences (especially, related to set partitions and permutations), so it is a must-have piece for those mathematicians who do research on enumerative combinatorics. In addition, the book contains number theoretical results on counting sequences of set partitions and permutations, so number theorists who would like to see nice applications of their area of interest in combinatorics will enjoy the book, too. Features The Outlook sections at the end of each chapter guide the reader towards topics not covered in the book, and many of the Outlook items point towards new research problems. An extensive bibliography and tables at the end make the book usable as a standard reference. Citations to results which were scattered in the literature now become easy, because huge parts of the book (especially in parts II and III) appear in book form for the first time.

2nd IMA Conference on Mathematics of Robotics

2nd IMA Conference on Mathematics of Robotics PDF Author: William Holderbaum
Publisher: Springer Nature
ISBN: 303091352X
Category :
Languages : en
Pages :

View

Book Description


Analytic Combinatorics

Analytic Combinatorics PDF Author: Marni Mishna
Publisher: CRC Press
ISBN: 1351036807
Category : Mathematics
Languages : en
Pages : 230

View

Book Description
Analytic Combinatorics: A Multidimensional Approach is written in a reader-friendly fashion to better facilitate the understanding of the subject. Naturally, it is a firm introduction to the concept of analytic combinatorics and is a valuable tool to help readers better understand the structure and large-scale behavior of discrete objects. Primarily, the textbook is a gateway to the interactions between complex analysis and combinatorics. The study will lead readers through connections to number theory, algebraic geometry, probability and formal language theory. The textbook starts by discussing objects that can be enumerated using generating functions, such as tree classes and lattice walks. It also introduces multivariate generating functions including the topics of the kernel method, and diagonal constructions. The second part explains methods of counting these objects, which involves deep mathematics coming from outside combinatorics, such as complex analysis and geometry. Features Written with combinatorics-centric exposition to illustrate advanced analytic techniques Each chapter includes problems, exercises, and reviews of the material discussed in them Includes a comprehensive glossary, as well as lists of figures and symbols About the author Marni Mishna is a professor of mathematics at Simon Fraser University in British Columbia. Her research investigates interactions between discrete structures and many diverse areas such as representation theory, functional equation theory, and algebraic geometry. Her specialty is the development of analytic tools to study the large-scale behavior of discrete objects.

Algorithmics of Nonuniformity

Algorithmics of Nonuniformity PDF Author: Micha Hofri
Publisher: CRC Press
ISBN: 1498750729
Category : Mathematics
Languages : en
Pages : 570

View

Book Description
Algorithmics of Nonuniformity is a solid presentation about the analysis of algorithms, and the data structures that support them. Traditionally, algorithmics have been approached either via a probabilistic view or an analytic approach. The authors adopt both approaches and bring them together to get the best of both worlds and benefit from the advantage of each approach. The text examines algorithms that are designed to handle general data—sort any array, find the median of any numerical set, and identify patterns in any setting. At the same time, it evaluates "average" performance, "typical" behavior, or in mathematical terms, the expectations of the random variables that describe their operations. Many exercises are presented, which are essential since they convey additional material complementing the content of the chapters. For this reason, the solutions are more than mere answers, but explain and expand upon related concepts, and motivate further work by the reader. Highlights: A unique book that merges probability with analysis of algorithms Approaches analysis of algorithms from the angle of uniformity Non-uniformity makes more realistic models of real-life scenarios possible Results can be applied to many applications Includes many exercises of various levels of difficulty About the Authors: Micha Hofri is a Professor of Computer Science, and former department head at Worcester Polytechnic Institute. He holds a Ph.D. of Industrial Engineering (1972), all from Technion, the Israel Institute of Technology. He has 39 publications in Mathematics. Hosam Mahmoud is a Professor at, the Department of Statistics at George Washington University in Washington D.C., where he used to be the former chair. He holds an Ph.D. in Computer Science from Ohio State University. He is on the editorial board of five academic journals.