Deep Learning for Medical Decision Support Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Deep Learning for Medical Decision Support Systems PDF full book. Access full book title Deep Learning for Medical Decision Support Systems by Utku Kose. Download full books in PDF and EPUB format.

Deep Learning for Medical Decision Support Systems

Deep Learning for Medical Decision Support Systems PDF Author: Utku Kose
Publisher: Springer Nature
ISBN: 981156325X
Category : Technology & Engineering
Languages : en
Pages : 171

Get Book

Book Description
This book explores various applications of deep learning-oriented diagnosis leading to decision support, while also outlining the future face of medical decision support systems. Artificial intelligence has now become a ubiquitous aspect of modern life, and especially machine learning enjoysgreat popularity, since it offers techniques that are capable of learning from samples to solve newly encountered cases. Today, a recent form of machine learning, deep learning, is being widely used with large, complex quantities of data, because today’s problems require detailed analyses of more data. This is critical, especially in fields such as medicine. Accordingly, the objective of this book is to provide the essentials of and highlight recent applications of deep learning architectures for medical decision support systems. The target audience includes scientists, experts, MSc and PhD students, postdocs, and any readers interested in the subjectsdiscussed. The book canbe used as a reference work to support courses on artificial intelligence, machine/deep learning, medical and biomedicaleducation.

Deep Learning for Medical Decision Support Systems

Deep Learning for Medical Decision Support Systems PDF Author: Utku Kose
Publisher: Springer Nature
ISBN: 981156325X
Category : Technology & Engineering
Languages : en
Pages : 171

View

Book Description
This book explores various applications of deep learning-oriented diagnosis leading to decision support, while also outlining the future face of medical decision support systems. Artificial intelligence has now become a ubiquitous aspect of modern life, and especially machine learning enjoysgreat popularity, since it offers techniques that are capable of learning from samples to solve newly encountered cases. Today, a recent form of machine learning, deep learning, is being widely used with large, complex quantities of data, because today’s problems require detailed analyses of more data. This is critical, especially in fields such as medicine. Accordingly, the objective of this book is to provide the essentials of and highlight recent applications of deep learning architectures for medical decision support systems. The target audience includes scientists, experts, MSc and PhD students, postdocs, and any readers interested in the subjectsdiscussed. The book canbe used as a reference work to support courses on artificial intelligence, machine/deep learning, medical and biomedicaleducation.

Deep Learning for Medical Decision Support Systems

Deep Learning for Medical Decision Support Systems PDF Author: Utku Kose
Publisher: Springer
ISBN: 9789811563249
Category : Technology & Engineering
Languages : en
Pages : 171

View

Book Description
This book explores various applications of deep learning-oriented diagnosis leading to decision support, while also outlining the future face of medical decision support systems. Artificial intelligence has now become a ubiquitous aspect of modern life, and especially machine learning enjoysgreat popularity, since it offers techniques that are capable of learning from samples to solve newly encountered cases. Today, a recent form of machine learning, deep learning, is being widely used with large, complex quantities of data, because today’s problems require detailed analyses of more data. This is critical, especially in fields such as medicine. Accordingly, the objective of this book is to provide the essentials of and highlight recent applications of deep learning architectures for medical decision support systems. The target audience includes scientists, experts, MSc and PhD students, postdocs, and any readers interested in the subjectsdiscussed. The book canbe used as a reference work to support courses on artificial intelligence, machine/deep learning, medical and biomedicaleducation.

Machine Learning and Probabilistic Graphical Models for Decision Support Systems

Machine Learning and Probabilistic Graphical Models for Decision Support Systems PDF Author: Kim Phuc Tran
Publisher: CRC Press
ISBN: 100077144X
Category : Computers
Languages : en
Pages : 330

View

Book Description
This book presents recent advancements in research, a review of new methods and techniques, and applications in decision support systems (DSS) with Machine Learning and Probabilistic Graphical Models, which are very effective techniques in gaining knowledge from Big Data and in interpreting decisions. It explores Bayesian network learning, Control Chart, Reinforcement Learning for multicriteria DSS, Anomaly Detection in Smart Manufacturing with Federated Learning, DSS in healthcare, DSS for supply chain management, etc. Researchers and practitioners alike will benefit from this book to enhance the understanding of machine learning, Probabilistic Graphical Models, and their uses in DSS in the context of decision making with uncertainty. The real-world case studies in various fields with guidance and recommendations for the practical applications of these studies are introduced in each chapter.

Intelligent Medical Decision Support System Based on Imperfect Information

Intelligent Medical Decision Support System Based on Imperfect Information PDF Author: Krzysztof Dyczkowski
Publisher: Springer
ISBN: 3319670050
Category : Technology & Engineering
Languages : en
Pages : 123

View

Book Description
This book discusses computer-supported medical diagnosis with a particular focus on ovarian tumor diagnosis – since ovarian cancer is difficult to diagnose and has high mortality rates, especially in Central and Eastern Europe. It presents the theoretical foundations (both medical and mathematical) of the intelligent OvaExpert system, which supports decision-making in tumor diagnosis. OvaExpert was created primarily to help gynecologists predict the malignancy of ovarian tumors by applying the existing diagnostic models and using modern methods of computational intelligence that accommodate imprecise and imperfect medical data, both of which are common features of everyday medical practice. The book presents novel methods based on interval-valued fuzzy sets and the theory of their cardinalities.

Algorithms in Decision Support Systems

Algorithms in Decision Support Systems PDF Author: Vicente García-Díaz
Publisher: MDPI
ISBN: 3036505881
Category : Technology & Engineering
Languages : en
Pages : 162

View

Book Description
This book aims to provide a new vision of how algorithms are the core of decision support systems (DSSs), which are increasingly important information systems that help to make decisions related to unstructured and semi-unstructured decision problems that do not have a simple solution from a human point of view. It begins with a discussion of how DSSs will be vital to improving the health of the population. The following article deals with how DSSs can be applied to improve the performance of people doing a specific task, like playing tennis. It continues with a work in which authors apply DSSs to insect pest management, together with an interactive platform for fitting data and carrying out spatial visualization. The next article improves how to reschedule trains whenever disturbances occur, together with an evaluation framework. The final works focus on different relevant areas of DSSs: 1) a comparison of ensemble and dimensionality reduction models based on an entropy criterion; 2) a radar emitter identification method based on semi-supervised and transfer learning; 3) design limitations, errors, and hazards in creating very large-scale DSSs; and 4) efficient rule generation for associative classification. We hope you enjoy all the contents in the book.

Intelligent Decision Support Systems—A Journey to Smarter Healthcare

Intelligent Decision Support Systems—A Journey to Smarter Healthcare PDF Author: Smaranda Belciug
Publisher: Springer
ISBN: 3030143546
Category : Technology & Engineering
Languages : en
Pages : 271

View

Book Description
The goal of this book is to provide, in a friendly and refreshing manner, both theoretical concepts and practical techniques for the important and exciting field of Artificial Intelligence that can be directly applied to real-world healthcare problems. Healthcare – the final frontier. Lately, it seems like Pandora opened the box and evil was released into the world. Fortunately, there was one thing left in the box: hope. In recent decades, hope has been increasingly represented by Intelligent Decision Support Systems. Their continuing mission: to explore strange new diseases, to seek out new treatments and drugs, and to intelligently manage healthcare resources and patients. Hence, this book is designed for all those who wish to learn how to explore, analyze and find new solutions for the most challenging domain of all time: healthcare.

Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering

Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799890244
Category : Business & Economics
Languages : en
Pages : 1538

View

Book Description
Decision support systems (DSS) are widely touted for their effectiveness in aiding decision making, particularly across a wide and diverse range of industries including healthcare, business, and engineering applications. The concepts, principles, and theories of enhanced decision making are essential points of research as well as the exact methods, tools, and technologies being implemented in these industries. From both a standpoint of DSS interfaces, namely the design and development of these technologies, along with the implementations, including experiences and utilization of these tools, one can get a better sense of how exactly DSS has changed the face of decision making and management in multi-industry applications. Furthermore, the evaluation of the impact of these technologies is essential in moving forward in the future. The Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering explores how decision support systems have been developed and implemented across diverse industries through perspectives on the technology, the utilizations of these tools, and from a decision management standpoint. The chapters will cover not only the interfaces, implementations, and functionality of these tools, but also the overall impacts they have had on the specific industries mentioned. This book also evaluates the effectiveness along with benefits and challenges of using DSS as well as the outlook for the future. This book is ideal for decision makers, IT consultants and specialists, software developers, design professionals, academicians, policymakers, researchers, professionals, and students interested in how DSS is being used in different industries.

Machine Learning for Healthcare Applications

Machine Learning for Healthcare Applications PDF Author: Sachi Nandan Mohanty
Publisher: John Wiley & Sons
ISBN: 1119792592
Category : Computers
Languages : en
Pages : 416

View

Book Description
When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics PDF Author: Pradeep N
Publisher: Academic Press
ISBN: 0128220449
Category : Science
Languages : en
Pages : 372

View

Book Description
Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics presents the changing world of data utilization, especially in clinical healthcare. Various techniques, methodologies, and algorithms are presented in this book to organize data in a structured manner that will assist physicians in the care of patients and help biomedical engineers and computer scientists understand the impact of these techniques on healthcare analytics. The book is divided into two parts: Part 1 covers big data aspects such as healthcare decision support systems and analytics-related topics. Part 2 focuses on the current frameworks and applications of deep learning and machine learning, and provides an outlook on future directions of research and development. The entire book takes a case study approach, providing a wealth of real-world case studies in the application chapters to act as a foundational reference for biomedical engineers, computer scientists, healthcare researchers, and clinicians. Provides a comprehensive reference for biomedical engineers, computer scientists, advanced industry practitioners, researchers, and clinicians to understand and develop healthcare analytics using advanced tools and technologies Includes in-depth illustrations of advanced techniques via dataset samples, statistical tables, and graphs with algorithms and computational methods for developing new applications in healthcare informatics Unique case study approach provides readers with insights for practical clinical implementation

Innovations in Design & Decision Support Systems in Architecture and Urban Planning

Innovations in Design & Decision Support Systems in Architecture and Urban Planning PDF Author: Jos P. Leeuwen, van
Publisher: Springer Science & Business Media
ISBN: 1402050607
Category : Technology & Engineering
Languages : en
Pages : 502

View

Book Description
Traditionally, the DDSS conferences aim to be a platform for both starting and experienced researchers who focus on the development and application of computer support in urban planning and architectural design. This volume contains 31 peer reviewed papers from this year’s conference. This book will bring researchers together and is a valuable resource for their continuous joint effort to improve the design and planning of our environment.