A Mathematical Introduction to Wavelets PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Mathematical Introduction to Wavelets PDF full book. Access full book title A Mathematical Introduction to Wavelets by P. Wojtaszczyk. Download full books in PDF and EPUB format.

A Mathematical Introduction to Wavelets

A Mathematical Introduction to Wavelets PDF Author: P. Wojtaszczyk
Publisher: Cambridge University Press
ISBN: 9780521578943
Category : Mathematics
Languages : en
Pages : 280

Get Book

Book Description
The only introduction to wavelets that doesn't avoid the tough mathematical questions.

A Mathematical Introduction to Wavelets

A Mathematical Introduction to Wavelets PDF Author: P. Wojtaszczyk
Publisher: Cambridge University Press
ISBN: 9780521578943
Category : Mathematics
Languages : en
Pages : 280

View

Book Description
The only introduction to wavelets that doesn't avoid the tough mathematical questions.

A Mathematical Introduction to Compressive Sensing

A Mathematical Introduction to Compressive Sensing PDF Author: Simon Foucart
Publisher: Springer Science & Business Media
ISBN: 0817649484
Category : Computers
Languages : en
Pages : 625

View

Book Description
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

An Introduction to Wavelets Through Linear Algebra

An Introduction to Wavelets Through Linear Algebra PDF Author: M.W. Frazier
Publisher: Springer
ISBN: 3642855709
Category : Mathematics
Languages : en
Pages : 503

View

Book Description
Mathematics majors at Michigan State University take a "Capstone" course near the end of their undergraduate careers. The content of this course varies with each offering. Its purpose is to bring together different topics from the undergraduate curriculum and introduce students to a developing area in mathematics. This text was originally written for a Capstone course. Basic wavelet theory is a natural topic for such a course. By name, wavelets date back only to the 1980s. On the boundary between mathematics and engineering, wavelet theory shows students that mathematics research is still thriving, with important applications in areas such as image compression and the numerical solution of differential equations. The author believes that the essentials of wavelet theory are sufficiently elementary to be taught successfully to advanced undergraduates. This text is intended for undergraduates, so only a basic background in linear algebra and analysis is assumed. We do not require familiarity with complex numbers and the roots of unity.

A Friendly Guide to Wavelets

A Friendly Guide to Wavelets PDF Author: Gerald Kaiser
Publisher: Springer Science & Business Media
ISBN: 0817637117
Category : Mathematics
Languages : en
Pages : 324

View

Book Description
This volume is designed as a textbook for an introductory course on wavelet analysis and time-frequency analysis aimed at graduate students or advanced undergraduates in science and engineering. It can also be used as a self-study or reference book by practicing researchers in signal analysis and related areas. Since the expected audience is not presumed to have a high level of mathematical background, much of the needed analytical machinery is developed from the beginning. The only prerequisites for the first eight chapters are matrix theory, Fourier series, and Fourier integral transforms. Each of these chapters ends with a set of straightforward exercises designed to drive home the concepts just covered, and the many graphics should further facilitate absorption.

Wavelets

Wavelets PDF Author: Peter Nickolas
Publisher: Cambridge University Press
ISBN: 1316727939
Category : Mathematics
Languages : en
Pages :

View

Book Description
This text offers an excellent introduction to the mathematical theory of wavelets for senior undergraduate students. Despite the fact that this theory is intrinsically advanced, the author's elementary approach makes it accessible at the undergraduate level. Beginning with thorough accounts of inner product spaces and Hilbert spaces, the book then shifts its focus to wavelets specifically, starting with the Haar wavelet, broadening to wavelets in general, and culminating in the construction of the Daubechies wavelets. All of this is done using only elementary methods, bypassing the use of the Fourier integral transform. Arguments using the Fourier transform are introduced in the final chapter, and this less elementary approach is used to outline a second and quite different construction of the Daubechies wavelets. The main text of the book is supplemented by more than 200 exercises ranging in difficulty and complexity.

Wavelet Theory

Wavelet Theory PDF Author: I. I︠A︡ Novikov
Publisher: American Mathematical Soc.
ISBN: 0821849840
Category : Mathematics
Languages : en
Pages : 506

View

Book Description
Wavelet theory lies on the crossroad of pure and computational mathematics, with connections to audio and video signal processing, data compression, and information transmission. The present book is devoted to a systematic exposition of modern wavelet theory. It details the construction of orthogonal and biorthogonal systems of wavelets and studies their structural and approximation properties, starting with basic theory and ending with special topics and problems. The book also presents some applications of wavelets. Historical commentary is supplied for each chapter in the book, and most chapters contain exercises. The book is intended for professional mathematicians and graduate students working in functional analysis and approximation theory. It is also useful for engineers applying wavelet theory in their work. Prerequisites for reading the book consist of graduate courses in real and functional analysis.

Fractal Functions, Fractal Surfaces, and Wavelets

Fractal Functions, Fractal Surfaces, and Wavelets PDF Author: Peter R. Massopust
Publisher: Academic Press
ISBN: 0128044705
Category : Mathematics
Languages : en
Pages : 426

View

Book Description
Fractal Functions, Fractal Surfaces, and Wavelets, Second Edition, is the first systematic exposition of the theory of local iterated function systems, local fractal functions and fractal surfaces, and their connections to wavelets and wavelet sets. The book is based on Massopust’s work on and contributions to the theory of fractal interpolation, and the author uses a number of tools—including analysis, topology, algebra, and probability theory—to introduce readers to this exciting subject. Though much of the material presented in this book is relatively current (developed in the past decades by the author and his colleagues) and fairly specialized, an informative background is provided for those entering the field. With its coherent and comprehensive presentation of the theory of univariate and multivariate fractal interpolation, this book will appeal to mathematicians as well as to applied scientists in the fields of physics, engineering, biomathematics, and computer science. In this second edition, Massopust includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, further develops the connections to wavelets and wavelet sets, and deepens and extends the pedagogical content. Offers a comprehensive presentation of fractal functions and fractal surfaces Includes latest developments in fractal interpolation Connects fractal geometry with wavelet theory Includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, and further develops the connections to wavelets and wavelet sets Deepens and extends the pedagogical content

Multivariate Wavelet Frames

Multivariate Wavelet Frames PDF Author: Maria Skopina
Publisher: Springer
ISBN: 981103205X
Category : Mathematics
Languages : en
Pages : 248

View

Book Description
This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in wavelet algorithms, which normally deliver better performance. The authors discuss how to provide H-symmetry, where H is an arbitrary symmetry group, for wavelet bases and frames. The book also studies so-called frame-like wavelet systems, which preserve many important properties of frames and can often be used in their place, as well as their approximation properties. The matrix method of computing the regularity of refinable function from the univariate case is extended to multivariate refinement equations with arbitrary dilation matrices. This makes it possible to find the exact values of the Hölder exponent of refinable functions and to make a very refine analysis of their moduli of continuity.

Construction of Wavelets Through Walsh Functions

Construction of Wavelets Through Walsh Functions PDF Author: Yu. A. Farkov
Publisher: Springer
ISBN: 9811363706
Category : Mathematics
Languages : en
Pages : 381

View

Book Description
This book focuses on the fusion of wavelets and Walsh analysis, which involves non-trigonometric function series (or Walsh–Fourier series). The primary objective of the book is to systematically present the basic properties of non-trigonometric orthonormal systems such as the Haar system, Haar–Vilenkin system, Walsh system, wavelet system and frame system, as well as updated results on the book’s main theme. Based on lectures that the authors presented at several international conferences, the notions and concepts introduced in this interdisciplinary book can be applied to any situation where wavelets and their variants are used. Most of the applications of wavelet analysis and Walsh analysis can be tried for newly constructed wavelets. Given its breadth of coverage, the book offers a valuable resource for theoreticians and those applying mathematics in diverse areas. It is especially intended for graduate students of mathematics and engineering and researchers interested in applied analysis.

Harmonic, Wavelet and P-adic Analysis

Harmonic, Wavelet and P-adic Analysis PDF Author: Nguyen Minh Chuong
Publisher: World Scientific
ISBN: 981270549X
Category : Science
Languages : en
Pages : 393

View

Book Description
The mutual influence between mathematics and science and technology is becoming more and more widespread with profound connections among them being discovered. In particular, important connections between harmonic analysis, wavelet analysis and p-adic analysis have been found recently. This volume reports these findings and guides the reader towards the latest areas for further research. It is divided into two parts: harmonic, wavelet and p-adic analysis and p-adic and stochastic analysis.